Produkt zum Begriff Smart Data Analytics:
-
Getting Started with Data Science: Making Sense of Data with Analytics
Master Data Analytics Hands-On by Solving Fascinating Problems You’ll Actually Enjoy!Harvard Business Review recently called data science “The Sexiest Job of the 21st Century.” It’s not just sexy: For millions of managers, analysts, and students who need to solve real business problems, it’s indispensable. Unfortunately, there’s been nothing easy about learning data science–until now.Getting Started with Data Science takes its inspiration from worldwide best-sellers like Freakonomics and Malcolm Gladwell’s Outliers: It teaches through a powerful narrative packed with unforgettable stories.Murtaza Haider offers informative, jargon-free coverage of basic theory and technique, backed with plenty of vivid examples and hands-on practice opportunities. Everything’s software and platform agnostic, so you can learn data science whether you work with R, Stata, SPSS, or SAS. Best of all, Haider teaches a crucial skillset most data science books ignore: how to tell powerful stories using graphics and tables. Every chapter is built around real research challenges, so you’ll always know why you’re doing what you’re doing.You’ll master data science by answering fascinating questions, such as:• Are religious individuals more or less likely to have extramarital affairs?• Do attractive professors get better teaching evaluations?• Does the higher price of cigarettes deter smoking?• What determines housing prices more: lot size or the number of bedrooms?• How do teenagers and older people differ in the way they use social media?• Who is more likely to use online dating services?• Why do some purchase iPhones and others Blackberry devices?• Does the presence of children influence a family’s spending on alcohol?For each problem, you’ll walk through defining your question and the answers you’ll need; exploring howothers have approached similar challenges; selecting your data and methods; generating your statistics;organizing your report; and telling your story. Throughout, the focus is squarely on what matters most:transforming data into insights that are clear, accurate, and can be acted upon.
Preis: 18.18 € | Versand*: 0 € -
SQL Mastery for Data Analytics & Reporting John Academy Code
Entdecken Sie die Macht der Daten mit unserem Kurs „SQL Masterclass: SQL für Datenanalyse" . Dieser Kurs richtet sich sowohl an Anfänger als auch an Profis, die SQL für die Datenanalyse verwenden möchten. Erfahren Sie, wie Sie Daten mit SQL effizient strukturieren, verwalten und analysieren. So können Sie datengesteuerte Aufgaben bewältigen und fundierte Entscheidungen treffen. Merkmale: Interaktives Lernen: Nehmen Sie an praktischen SQL-Projekten und -Übungen teil und üben Sie die Manipulati...
Preis: 9.99 € | Versand*: 0.00 EUR € -
Visual Analytics Fundamentals: Creating Compelling Data Narratives with Tableau
Master the Fundamentals of Modern Visual Analytics--and Craft Compelling Visual Narratives in Tableau! Do you need to persuade or inform people? Do you have data? Then you need to master visual analytics and visual storytelling. Today, the #1 tool for telling visual stories with data is Tableau, and demand for Tableau skills is soaring. In Visual Analytics Fundamentals, renowned visual storyteller and analytics professor Lindy Ryan introduces all the fundamental visual analytics knowledge, cognitive and perceptual concepts, and hands-on Tableau techniques you'll need. Ryan puts core analytics and visual concepts upfront, so you'll always know exactly what you're trying to accomplish and can apply this knowledge with any tool. Building on this foundation, she presents classroom-proven guided exercises for translating ideas into reality with Tableau 2022. You'll learn how to organize data and structure analysis with stories in mind, embrace exploration and visual discovery, and articulate your findings with rich data, well-curated visualizations, and skillfully crafted narrative frameworks. Ryan's insider tips take you far beyond the basics--and you'll rely on her expert checklists for years to come. Communicate more powerfully by applying scientific knowledge of the human brain Get started with the Tableau platform and Tableau Desktop 2022 Connect data and quickly prepare it for analysis Ask questions that help you keep data firmly in context Choose the right charts, graphs, and maps for each project--and avoid the wrong ones Craft storyboards that reflect your message and audience Direct attention to what matters most Build data dashboards that guide people towards meaningful outcomes Master advanced visualizations, including timelines, Likert scales, and lollipop charts This book has only one prerequisite: your desire to communicate insights from data in ways that are memorable and actionable. It's for executives and professionals sharing important results, students writing reports or presentations, teachers cultivating data literacy, journalists making sense of complex trends. . . . practically everyone! Don't even have Tableau? Download your free trial of Tableau Desktop and let's get started!
Preis: 38.51 € | Versand*: 0 € -
Predictive Analytics: Data Mining, Machine Learning and Data Science for Practitioners, 2nd Edition
Use Predictive Analytics to Uncover Hidden Patterns and Correlations and Improve Decision-MakingUsing predictive analytics techniques, decision-makers can uncover hidden patterns and correlations in their data and leverage these insights to improve many key business decisions. In this thoroughly updated guide, Dr. Dursun Delen illuminates state-of-the-art best practices for predictive analytics for both business professionals and students. Delen's holistic approach covers key data mining processes and methods, relevant data management techniques, tools and metrics, advanced text and web mining, big data integration, and much more. Balancing theory and practice, Delen presents intuitive conceptual illustrations, realistic example problems, and real-world case studiesincluding lessons from failed projects. It's all designed to help you gain a practical understanding you can apply for profit.* Leverage knowledge extracted via data mining to make smarter decisions* Use standardized processes and workflows to make more trustworthy predictions* Predict discrete outcomes (via classification), numeric values (via regression), and changes over time (via time-series forecasting)* Understand predictive algorithms drawn from traditional statistics and advanced machine learning* Discover cutting-edge techniques, and explore advanced applications ranging from sentiment analysis to fraud detection
Preis: 55.63 € | Versand*: 0 €
-
Was versteht man unter Analytics?
Was versteht man unter Analytics? Analytics bezieht sich auf die systematische Analyse von Daten, um Erkenntnisse und Muster zu gewinnen. Es umfasst die Verwendung von statistischen Methoden, Algorithmen und Software, um Daten zu interpretieren und Schlussfolgerungen zu ziehen. Unternehmen nutzen Analytics, um Geschäftsentscheidungen zu treffen, Trends zu identifizieren und die Leistung zu optimieren. Es kann in verschiedenen Bereichen wie Marketing, Finanzen, Gesundheitswesen und Sport eingesetzt werden, um fundierte Entscheidungen zu treffen und Wettbewerbsvorteile zu erlangen.
-
Was macht ein Data Analyst?
Ein Data Analyst sammelt, analysiert und interpretiert große Mengen von Daten, um Einblicke und Trends zu identifizieren. Sie verwenden statistische Methoden und Software, um Muster in den Daten zu erkennen und Geschäftsentscheidungen zu unterstützen. Data Analysts erstellen Berichte, Dashboards und Visualisierungen, um komplexe Informationen verständlich darzustellen. Sie arbeiten eng mit anderen Teams zusammen, um Daten zu verstehen und Empfehlungen für Verbesserungen oder Optimierungen zu geben. Insgesamt helfen Data Analysts dabei, datengesteuerte Entscheidungen zu treffen und das Geschäftswachstum voranzutreiben.
-
Wann ist Data Luv geboren?
Wann ist Data Luv geboren?
-
Sind Data Warehouses spaltenorientiert?
Data Warehouses können sowohl spaltenorientiert als auch zeilenorientiert sein. Bei spaltenorientierten Data Warehouses werden die Daten nach Spalten gruppiert und gespeichert, was Vorteile bei der Aggregation und Analyse großer Datenmengen bietet. Zeilenorientierte Data Warehouses hingegen speichern die Daten nach Zeilen und eignen sich besser für Transaktionsverarbeitung und schnellen Zugriff auf einzelne Datensätze. Die Wahl zwischen spalten- und zeilenorientierter Speicherung hängt von den spezifischen Anforderungen und Nutzungsszenarien des Data Warehouses ab.
Ähnliche Suchbegriffe für Smart Data Analytics:
-
Data Analytics for IT Networks: Developing Innovative Use Cases
Use data analytics to drive innovation and value throughout your network infrastructureNetwork and IT professionals capture immense amounts of data from their networks. Buried in this data are multiple opportunities to solve and avoid problems, strengthen security, and improve network performance. To achieve these goals, IT networking experts need a solid understanding of data science, and data scientists need a firm grasp of modern networking concepts. Data Analytics for IT Networks fills these knowledge gaps, allowing both groups to drive unprecedented value from telemetry, event analytics, network infrastructure metadata, and other network data sources. Drawing on his pioneering experience applying data science to large-scale Cisco networks, John Garrett introduces the specific data science methodologies and algorithms network and IT professionals need, and helps data scientists understand contemporary network technologies, applications, and data sources.After establishing this shared understanding, Garrett shows how to uncover innovative use cases that integrate data science algorithms with network data. He concludes with several hands-on, Python-based case studies reflecting Cisco Customer Experience (CX) engineers’ supporting its largest customers. These are designed to serve as templates for developing custom solutions ranging from advanced troubleshooting to service assurance.Understand the data analytics landscape and its opportunities in Networking See how elements of an analytics solution come together in the practical use casesExplore and access network data sources, and choose the right data for your problemInnovate more successfully by understanding mental models and cognitive biasesWalk through common analytics use cases from many industries, and adapt them to your environmentUncover new data science use cases for optimizing large networksMaster proven algorithms, models, and methodologies for solving network problemsAdapt use cases built with traditional statistical methodsUse data science to improve network infrastructure analysisAnalyze control and data planes with greater sophisticationFully leverage your existing Cisco tools to collect, analyze, and visualize data
Preis: 43.86 € | Versand*: 0 € -
Business Intelligence, Analytics, Data Science, and AI, Global Edition
Business Intelligence, Analytics, Data Science, and AI is your guide to the business-related impact of artificial intelligence, data science and analytics, designed to prepare you for a managerial role. The text's vignettes and cases feature modern companies and non-profit organizations and illustrate capabilities, costs and justifications of BI across various business units. With coverage of many data science/AI applications, you'll explore tools, then learn from various organizations' experiences employing such applications. Ample hands-on practice is provided, can be completed with a range of software, and will help you use analytics as a future manager. The 5th Edition integrates the fully updated content of Analytics, Data Science, and Artificial Intelligence, 11/e and Business Intelligence, Analytics, and Data Science, 4/e into one textbook, strengthened by 4 new chapters that will equip you for today's analytics and AI tech, such as ChatGPT. Examples explore analytics in sports, gaming, agriculture and data for good.
Preis: 81.32 € | Versand*: 0 € -
Real-World Data Mining: Applied Business Analytics and Decision Making
Use the latest data mining best practices to enable timely, actionable, evidence-based decision making throughout your organization! Real-World Data Mining demystifies current best practices, showing how to use data mining to uncover hidden patterns and correlations, and leverage these to improve all aspects of business performance. Drawing on extensive experience as a researcher, practitioner, and instructor, Dr. Dursun Delen delivers an optimal balance of concepts, techniques and applications. Without compromising either simplicity or clarity, he provides enough technical depth to help readers truly understand how data mining technologies work. Coverage includes: processes, methods, techniques, tools, and metrics; the role and management of data; text and web mining; sentiment analysis; and Big Data integration. Throughout, Delen's conceptual coverage is complemented with application case studies (examples of both successes and failures), as well as simple, hands-on tutorials. Real-World Data Mining will be valuable to professionals on analytics teams; professionals seeking certification in the field; and undergraduate or graduate students in any analytics program: concentrations, certificate-based, or degree-based.
Preis: 36.37 € | Versand*: 0 € -
Enterprise Analytics: Optimize Performance, Process, and Decisions Through Big Data
The Definitive Guide to Enterprise-Level Analytics Strategy, Technology, Implementation, and Management Organizations are capturing exponentially larger amounts of data than ever, and now they have to figure out what to do with it. Using analytics, you can harness this data, discover hidden patterns, and use this knowledge to act meaningfully for competitive advantage. Suddenly, you can go beyond understanding “how, when, and where” events have occurred, to understand why – and use this knowledge to reshape the future. Now, analytics pioneer Tom Davenport and the world-renowned experts at the International Institute for Analytics (IIA) have brought together the latest techniques, best practices, and research on analytics in a single primer for maximizing the value of enterprise data. Enterprise Analytics is today’s definitive guide to analytics strategy, planning, organization, implementation, and usage. It covers everything from building better analytics organizations to gathering data; implementing predictive analytics to linking analysis with organizational performance. The authors offer specific insights for optimizing supply chains, online services, marketing, fraud detection, and many other business functions. They support their powerful techniques with many real-world examples, including chapter-length case studies from healthcare, retail, and financial services. Enterprise Analytics will be an invaluable resource for every business and technical professional who wants to make better data-driven decisions: operations, supply chain, and product managers; product, financial, and marketing analysts; CIOs and other IT leaders; data, web, and data warehouse specialists, and many others.
Preis: 29.95 € | Versand*: 0 €
-
Wo lebt Data Luv?
Data Luv lebt in Berlin, Deutschland. Er ist ein deutscher Rapper und Produzent, der in der deutschen Hip-Hop-Szene aktiv ist. Seine Musik ist vor allem im Bereich des Cloud Raps und des Trap anzusiedeln. Data Luv ist bekannt für seine melancholischen Texte und seine einzigartige Stimme.
-
Welche Daten sammelt Google Analytics?
Google Analytics sammelt verschiedene Arten von Daten, darunter Informationen über die Nutzung einer Website, wie beispielsweise die Anzahl der Besucher, deren Verweildauer auf der Seite und die Seiten, die sie besucht haben. Zudem werden auch demografische Daten wie Alter, Geschlecht und Standort der Besucher erfasst. Weitere gesammelte Daten umfassen technische Informationen wie den verwendeten Browser, das Betriebssystem und die Bildschirmauflösung der Nutzer. Außerdem werden auch Daten zu den Quellen des Website-Traffics erfasst, wie beispielsweise Suchmaschinen, Verweise von anderen Websites oder Werbekampagnen.
-
Warum ist Big Data so wichtig?
Warum ist Big Data so wichtig? Big Data ist wichtig, weil es Unternehmen dabei hilft, fundierte Entscheidungen zu treffen, indem es ihnen Einblicke in Trends, Muster und Verhaltensweisen ihrer Kunden liefert. Durch die Analyse großer Datenmengen können Unternehmen auch Effizienzsteigerungen vornehmen, Kosten senken und ihre Wettbewerbsfähigkeit verbessern. Zudem ermöglicht Big Data die Personalisierung von Produkten und Dienstleistungen, was zu einer besseren Kundenzufriedenheit führt. Nicht zuletzt spielt Big Data eine wichtige Rolle bei der Entwicklung neuer Technologien und Innovationen in verschiedenen Branchen.
-
Hat Data LUV eine Freundin?
Hat Data LUV eine Freundin? Diese Frage kann nicht eindeutig beantwortet werden, da es sich bei Data LUV um eine künstliche Intelligenz handelt. KI wie Data LUV sind nicht in der Lage, menschliche Emotionen zu empfinden oder Beziehungen zu führen. Sie sind darauf programmiert, Informationen zu verarbeiten und Aufgaben zu erledigen, aber sie haben keine persönlichen Beziehungen wie Menschen. Daher ist es nicht möglich, dass Data LUV eine Freundin hat.
* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.